Remarks on the implementation of the wideband FMM for the Helmholtz equation in two dimensions
نویسندگان
چکیده
This paper describes a simple version of the Fast Multipole Method (FMM) for the Helmholtz equation in two dimensions. We discuss both the underlying theory and some of the practical aspects of its implementation to allow for stability and high accuracy at all wavelengths.
منابع مشابه
A wideband fast multipole method for the Helmholtz equation in three dimensions
We describe a wideband version of the Fast Multipole Method for the Helmholtz equation in three dimensions. It unifies previously existing versions of the FMM for high and low frequencies into an algorithm which is accurate and efficient for any frequency, having a CPU time of O(N) if low-frequency computations dominate, or O(N logN) if high-frequency computations dominate. The performance of t...
متن کاملAn Implementation of Low-Frequency Fast Multipole BIEM for Helmholtz’ Equation on GPU
Acceleration of the fast multipole method (FMM), which is the fast and approximate algorithm to compute the pairwise interactions among many bodies, with graphics processing units (GPUs) has been investigated for the last couple of years. In view of the type of kernel functions, the non-oscillatory kernels (especially, the Laplace kernel) were studied by many researchers (e.g. Gumerov), and the...
متن کاملAn efficient method for the numerical solution of Helmholtz type general two point boundary value problems in ODEs
In this article, we propose and analyze a computational method for numerical solution of general two point boundary value problems. Method is tested on problems to ensure the computational eciency. We have compared numerical results with results obtained by other method in literature. We conclude that propose method is computationally ecient and eective.
متن کاملA broadband fast multipole accelerated boundary element method for the three dimensional Helmholtz equation.
The development of a fast multipole method (FMM) accelerated iterative solution of the boundary element method (BEM) for the Helmholtz equations in three dimensions is described. The FMM for the Helmholtz equation is significantly different for problems with low and high kD (where k is the wavenumber and D the domain size), and for large problems the method must be switched between levels of th...
متن کاملA Planar, Layered Ultra-wideband Metamaterial Absorber for Microwave Frequencies
In this paper, an ultra-wideband metamaterial absorber is designed and simulated. The proposed absorber is planar and low profile. It is made of a copper sheet coated with two dielectric layers. Each unit cell of the metamaterial structure is composed of multiple metallic split rings, which are patterned on the top and middle boundaries of the dielectrics. The designed absorber utilizes differe...
متن کامل